Compare commits

...

6 Commits

Author SHA1 Message Date
Clemens Klug e254667256 Merge branch 'pag_viz' into merge_activity_pag 2017-12-19 13:25:41 +01:00
Clemens Klug b21d0bf8ba cleanup, improve structure 2017-12-19 13:12:07 +01:00
Clemens Klug f0a6a1c8aa WIP snapshot 2017-11-20 17:56:07 +01:00
Clemens Klug 75f41fb9f5 WIP snapshot 2017-11-15 18:39:42 +01:00
Clemens Klug 33d63b120d improve activity mapper 2017-11-15 12:54:11 +01:00
Clemens Klug b40efa4bbb WIP snapshot 2017-11-13 13:52:57 +01:00
16 changed files with 757 additions and 309 deletions

View File

@ -52,7 +52,7 @@ __MAPPING__ = {
StoreRender StoreRender
], ],
SimulationOrderAnalyzer: [ SimulationOrderAnalyzer: [
JSONRender, #JSONRender,
# SimulationOrderRender, # SimulationOrderRender,
SimulationGroupRender SimulationGroupRender
] ]

View File

@ -52,7 +52,7 @@ class ResultStore:
:return: :return:
""" """
result = [] result = []
for key in self.store: for key in sorted(self.store):
result += self.store[key] result += self.store[key]
return result return result

View File

@ -204,7 +204,7 @@ class ActivityMapper(Analyzer):
board_data = get_board_data(self.settings.source, self.instance_config_id, entry["sequence_id"], board_data = get_board_data(self.settings.source, self.instance_config_id, entry["sequence_id"],
entry["board_id"]) entry["board_id"])
entry["extra_data"] = board_data entry["extra_data"] = board_data
entry["extra_data"]["activity_type"] = self.classify_entry(entry) entry["extra_data"]["activity_type"] = self.last_board_type
entry['coordinate'] = self.new_coordinate() entry['coordinate'] = self.new_coordinate()
self.timeline.append(entry) self.timeline.append(entry)
return False return False
@ -293,8 +293,8 @@ class InstanceConfig(Analyzer):
print(entry) print(entry)
self.store["instance_id"] = json_path(entry, self.settings.custom["instance_config_id"]) self.store["instance_id"] = json_path(entry, self.settings.custom["instance_config_id"])
def result(self, store: ResultStore): def result(self, store: ResultStore, name=None):
store.add(Result(type(self), dict(self.store))) store.add(Result(type(self), dict(self.store), name=name))
class SimulationOrderAnalyzer(Analyzer): class SimulationOrderAnalyzer(Analyzer):
@ -305,8 +305,8 @@ class SimulationOrderAnalyzer(Analyzer):
self.store = defaultdict(lambda: -1) # TODO verify self.store = defaultdict(lambda: -1) # TODO verify
self.order = [] self.order = []
def result(self, store: ResultStore) -> None: def result(self, store: ResultStore, name=None) -> None:
store.add(Result(type(self), [self.store[sim] for sim in self.order])) store.add(Result(type(self), [self.store[sim] for sim in self.order], name=name))
def process(self, entry: dict) -> bool: def process(self, entry: dict) -> bool:
entry_type = entry[self.settings.type_field] entry_type = entry[self.settings.type_field]

View File

@ -137,3 +137,72 @@ class ProgressAnalyzer(Analyzer):
if entry[self.settings.type_field] in self.settings.boards: if entry[self.settings.type_field] in self.settings.boards:
self.board[entry["timestamp"]] = entry self.board[entry["timestamp"]] = entry
return False return False
class MetaDataAnalyzer(Analyzer):
"""collect metadata"""
__name__ = "MetaDataAnalyzer"
def result(self, store: ResultStore, name=None) -> None:
store.add(Result(type(self), dict(self.store)))
def process(self, entry: dict) -> bool:
if not "metadata" in self.settings.custom:
return False
for mdata in self.settings.custom["metadata"]:
key = self.settings.custom["metadata"]
if key in entry:
self.store[mdata] = json_path(entry, key)
def __init__(self, settings: LogSettings) -> None:
super().__init__(settings)
self.store = {}
def write_logentry_count_csv(LogEntryCountCSV, store, render, analyzers):
global cat, data, lines, csvfile
LogEntryCountCSV.summary = None
for cat in store.get_categories():
data = store.get_category(cat)
render(analyzers.LogEntryCountAnalyzer, data, name=cat)
if LogEntryCountCSV.summary:
headers = []
lines = []
for name in LogEntryCountCSV.summary:
data = LogEntryCountCSV.summary[name]
for head in data:
if not head in headers:
headers.append(head)
line = [name]
for head in headers:
line.append(data[head]) if head in data else line.append(0)
lines.append(line)
import csv
with open('logentrycount.csv', 'w', newline='') as csvfile:
writer = csv.writer(csvfile, quoting=csv.QUOTE_NONE)
writer.writerow(["name"] + [h.split(".")[-1] for h in headers])
for line in lines:
writer.writerow(line)
def write_simulation_flag_csv(store):
global csvfile, result, i
from datetime import datetime
import json
json.dump(store.serializable(), open("simus.json", "w"), indent=2)
with open("simus.csv", "w") as csvfile:
csvfile.write("instanceconfig,log,simu,answered,universe_state,selected_actions,timestamp,time\n")
for key in store.get_store():
csvfile.write("{}\n".format(key))
for result in store.store[key]:
csvfile.write(",{}\n".format(result.name))
for i in result.get():
csvfile.write(",,{},{},{},{},{},{}\n".format(
i['answers']['@id'],
i['answers']['answered'],
len(i['answers']['universe_state']) if i['answers']['universe_state'] else 0,
len(i['selected_actions']) if i['selected_actions'] else 0,
i['timestamp'],
str(datetime.fromtimestamp(i['timestamp'] / 1000))
))

View File

@ -186,7 +186,13 @@ class SimulationOrderRender(Render):
class SimulationGroupRender(Render): class SimulationGroupRender(Render):
def render(self, results: List[Result], name=None): def render(self, results: List[Result], name=None):
data = [r.get() for r in self.filter(results)] #data = [r.get() for r in self.filter(results)]
data = []
for r in self.filter(results):
raw = r.get()
if len(raw) < 6:
raw = [0] + raw
data.append(raw)
print(name, len(data)) print(name, len(data))
# graph_fit(list(data), name=name) # graph_fit(list(data), name=name)
graph_plot(list(data), ylabel="simulation retries", title="sequential simulation retries", rotation=None, graph_plot(list(data), ylabel="simulation retries", title="sequential simulation retries", rotation=None,

393
analyzers/render/wip.py Normal file
View File

@ -0,0 +1,393 @@
import json
import numpy as np
import analyzers
from util.geo import calc_distance
def time_distribution(store):
# json.dump(store.serializable(), open("new.json", "w"), indent=1)
keys = [
"simu",
"question",
"image",
"audio",
"video",
"other",
"map"
]
import matplotlib.pyplot as plt
# results = []
places = defaultdict(list)
for log in store.get_all():
result = defaultdict(lambda: 0)
for i in log.get()['track']:
duration = i['properties']['end_timestamp'] - i['properties']['start_timestamp']
result[i['properties']['activity_type']] += duration
print(json.dumps(result, indent=4))
total = sum(result.values())
print(total)
percentage = defaultdict(lambda: 0)
minutes = defaultdict(lambda: 0)
for i in result:
percentage[i] = result[i] / total
minutes[i] = result[i] / 60_000
print(json.dumps(percentage, indent=4))
if not 'error' in result:
# places[log.get()['instance']].append(percentage)
places[log.get()['instance']].append(minutes)
for place in places:
places[place] = sorted(places[place], key=lambda item: item['map'])
dummy = [0] * len(keys)
results = []
sites = []
from util.meta_temp import CONFIG_NAMES
for i in places:
for j in places[i]:
ordered = []
for k in keys:
ordered.append(j[k])
results.append(ordered)
results.append(dummy)
sites.append(CONFIG_NAMES[i] if i in CONFIG_NAMES else "---")
size = len(results)
ind = np.arange(size)
width = 0.9
print(results)
data = list(zip(*results))
print(data)
lines = []
bottom = [0] * len(results)
for i in range(0, len(data)):
lines.append(plt.bar(ind, data[i], bottom=bottom, width=width)[0])
for k, x in enumerate(data[i]):
bottom[k] += x
plt.legend(lines, keys)
plt.title(", ".join(sites))
plt.show()
# size = len(results)
# ind = np.arange(size)
# width = 0.9
# print(results)
# data = list(zip(*results))
# print(data)
# lines = []
# bottom = [0] * len(results)
# for i in range(0, len(data)):
# lines.append(plt.bar(ind, data[i], bottom=bottom, width=width)[0])
# for k, x in enumerate(data[i]):
# bottom[k] += x
# plt.legend(lines, keys)
# plt.title("Zwei Spiele in Filderstadt (t1=237min; t2=67min)")
# plt.show()
# json.dump(store.serializable(), open("new.json", "w"), indent=1)
from collections import defaultdict
import matplotlib.pyplot as plt
from util.meta_temp import CONFIG_NAMES
keys = [
"simu",
"question",
"image",
"audio",
"video",
"other",
"map",
# "error"
]
loc_keys = [
"question",
"image",
"audio",
"video"
]
def get_data(store, relative_values=True, sort=True, show_errors=False):
places = defaultdict(list)
for log in store.get_all():
if not log.analysis() == analyzers.ActivityMapper:
continue
result = defaultdict(lambda: 0)
for i in log.get()['track']:
duration = i['properties']['end_timestamp'] - i['properties']['start_timestamp']
result[i['properties']['activity_type']] += duration
print(json.dumps(result, indent=4))
total = sum(result.values())
print(total)
percentage = defaultdict(lambda: 0)
minutes = defaultdict(lambda: 0)
for i in result:
percentage[i] = result[i] / total
minutes[i] = result[i] / 60_000
print(json.dumps(percentage, indent=4))
if not 'error' in result or show_errors:
if relative_values:
places[log.get()['instance']].append(percentage)
else:
places[log.get()['instance']].append(minutes)
if sort:
for place in places:
places[place] = sorted(places[place], key=lambda item: item['map'])
return places
whitelist = ['16fc3117-61db-4f50-b84f-81de6310206f', '5e64ce07-1c16-4d50-ac4e-b3117847ea43',
'90278021-4c57-464e-90b1-d603799d07eb', 'ff8f1e8f-6cf5-4a7b-835b-5e2226c1e771']
def get_data_distance(store, relative_values=True, sort=True, show_errors=False):
places = defaultdict(list)
for log in store.get_all():
if not log.analysis() == analyzers.ActivityMapper:
continue
result = defaultdict(lambda: 0)
for i in log.get()['track']:
coords = i['coordinates']
if len(coords) > 1:
distance = calc_distance(coords)
result[i['properties']['activity_type']] += distance
total = sum(result.values())
percentage = defaultdict(lambda: 0)
for i in result:
if not total == 0:
percentage[i] = result[i] / total
if not 'error' in result or show_errors:
if relative_values:
places[log.get()['instance']].append(percentage)
else:
places[log.get()['instance']].append(result)
if sort:
for place in places:
places[place] = sorted(places[place], key=lambda item: item['map'])
return places
def get_all_data(store, sort=False, relative=True):
places = defaultdict(list)
simu_distribution = defaultdict(lambda: 0)
# divisiors = {"time":60_000, "space":1000000}
for log in store.get_all():
if not log.analysis() == analyzers.ActivityMapper:
continue
result = defaultdict(lambda: defaultdict(lambda: 0))
for i in log.get()['track']:
coords = i['coordinates']
if len(coords) > 1:
distance = calc_distance(coords)
else:
distance = 0.0
result["space"][i['properties']['activity_type']] += distance
duration = i['properties']['end_timestamp'] - i['properties']['start_timestamp']
result["time"][i['properties']['activity_type']] += duration
total_space = sum(result["space"].values())
total_time = sum(result["time"].values())
percentage = defaultdict(lambda: defaultdict(lambda: 0))
total = defaultdict(lambda: defaultdict(lambda: 0))
for i in result["space"]:
if not total_space == 0:
percentage[i]["space"] = result["space"][i] / total_space
else:
percentage[i]["space"] = 0
if not total_time == 0:
percentage[i]["time"] = result["time"][i] / total_time
else:
percentage[i]["time"] = 0
for t in ("space", "time"):
# total[i][t] += (result[t][i] / divisiors[t])
total[i][t] += result[t][i]
print(percentage)
if not 'error' in result:
if relative:
value = percentage
else:
value = total
places[log.get()['instance']].append(value)
simus = defaultdict(lambda: 0)
for item in log.get()['boards']:
if item["extra_data"]["activity_type"] == "simu":
simus[item["board_id"]] += 1
simu_distribution[len(simus)] += 1
if sort:
for place in places:
places[place] = sorted(places[place], key=lambda item: item['map']['time'])
print(simu_distribution)
return places
def stack_data(keys, places, type="space"):
divisiors = {"time": 60_000, "space": 1000}
# divisiors = {"time": 1, "space": 1}
dummy = [0] * len(keys)
results = []
sites = []
for i in sorted(places):
if not i in whitelist:
continue
place = sorted(places[i], key=lambda item: item['map'][type])
for j in place:
ordered = []
for k in keys:
if k in j:
ordered.append(j[k][type] / divisiors[type])
else:
ordered.append(0)
print(sum(ordered))
# if sum(ordered) > 0.9 and sum(ordered) < 4000 and sum(ordered)>10:
if sum(ordered) > 0.9 and sum(ordered) < 100:
# print(sum(ordered), 1-sum(ordered))
# if sum(ordered)<1:
# ordered[-2] = 1-sum(ordered[:-2], ordered[-1])
results.append(ordered)
results.append(dummy)
sites.append(CONFIG_NAMES[i] if i in CONFIG_NAMES else "---")
return results, sites
def plot_data(places, keys):
results, sites = stack_data(keys, places)
dpi = 86.1
plt.figure(figsize=(1280 / dpi, 720 / dpi))
size = len(results)
print("{} elements total".format(size))
ind = np.arange(size)
width = 1
# print(results)
data = list(zip(*results))
# print(data)
lines = []
bottom = [0] * size
plt.ticklabel_format(useMathText=False)
for i in range(0, len(data)):
lines.append(plt.bar(ind, data[i], bottom=bottom, width=width)[0])
for k, x in enumerate(data[i]):
bottom[k] += x
plt.legend(lines, keys)
plt.title(", ".join(sites))
# plt.show()
dpi = 86
plt.savefig("space_abs_{}.png".format(size), dpi=dpi, bbox_inches="tight")
colors = {
"simu": "blue",
"question": "orange",
"image": "green",
"audio": "red",
"video": "purple",
"other": "brown",
"map": "violet",
# "error":"grey",
"tasks": "olive",
}
markers = [".", "o", "x", "s", "*", "D", "p", ",", "<", ">", "^", "v", "1", "2", "3", "4"]
def plot_time_space(time_data, space_data, keys):
# assuming time_data and space_data are in same order!
marker = 0
for id in time_data:
for k in keys:
for i in range(len(time_data[id])):
print(time_data[id][i][k], space_data[id][i][k])
plt.plot(time_data[id][i][k], space_data[id][i][k], color=colors[k], marker=markers[marker])
marker += 1
plt.show()
# plt.cla()
# plt.clf()
# plt.close()
def group_locationbased_tasks(data):
for id in data:
for log in data[id]:
loc = {"space": 0, "time": 0}
for k in log:
if k in loc_keys:
for i in ["space", "time"]:
loc[i] += log[k][i]
log["tasks"] = loc
def plot_time_space_rel(combined, keys):
groups = defaultdict(list)
keys = list(keys)
keys.remove("other")
for i in loc_keys:
keys.remove(i)
keys.append("tasks")
ids = []
group_locationbased_tasks(combined)
for k in keys:
for id in sorted(combined):
if id not in whitelist:
continue
if not id in ids:
ids.append(id)
group = 0.0
count = 0
for item in combined[id]:
if k in item:
time = item[k]["time"] / 1000
distance = item[k]["space"]
if time > 0:
group += (distance / time)
count += 1
else:
print("div by zero", distance, time)
if count > 0:
groups[k].append(group / count)
else:
groups[k].append(0.0)
print(ids)
ind = np.arange(len(ids))
width = .7 / len(groups)
print(ind)
print(json.dumps(groups, indent=1))
bars = []
dpi = 200
plt.figure(figsize=(1280 / dpi, 720 / dpi))
fig, ax = plt.subplots()
for k in groups:
print(groups[k])
if not len(groups[k]):
groups[k].append(0)
ind = ind + (width)
bars.append(ax.bar((ind + width * len(groups) / 2), groups[k], width, color=colors[k]))
ax.set_xticks(ind + width / 2)
ax.set_xticklabels(list([CONFIG_NAMES[i] if i in CONFIG_NAMES else "---" for i in ids]))
kmh = plt.hlines((1 / 3.6), 0.3, 4.2, linestyles="dashed", label="1 km/h", linewidths=1)
plt.legend(bars + [kmh], keys + [kmh.get_label()])
print(combined.keys(), ids)
print([CONFIG_NAMES[i] if i in CONFIG_NAMES else "---" for i in ids])
# plt.show()
dpi = 200
plt.savefig("speed2.png", dpi=dpi)
# plot_time_space_rel(temporal_data_rel, spatial_data_rel, keys)
# plot_data(combined, keys)
# plot_data(get_data_distance(store,relative_values=False), keys)

View File

@ -13,9 +13,9 @@
], ],
"analyzers": { "analyzers": {
"analyzers": [ "analyzers": [
"BiogamesCategorizer", "SimulationCategorizer",
"ActivityMapper", "SimulationOrderAnalyzer",
"SimulationFlagsAnalyzer" "ActivityMapper"
] ]
}, },
"dis":[ "dis":[
@ -67,14 +67,19 @@
"action":"PAUSE" "action":"PAUSE"
} }
}, },
"coordinates": "location.coordinates" "coordinates": "location.coordinates",
"metadata":{
"timestamp": "timestamp",
"gamefield": "instance_id",
"user": "player_group_name"
}
}, },
"source":{ "source":{
"type": "Biogames", "type": "Biogames",
"url": "http://0.0.0.0:5000/game2/instance/log/list/", "url": "http://0.0.0.0:5000/game2/instance/log/list/",
"login_url": "http://localhost:5000/game2/auth/json-login", "login_url": "http://localhost:5000/game2/auth/json-login",
"username": "dev", "username": "ba",
"password": "dev", "password": "853451",
"host":"http://0.0.0.0:5000" "host":"http://0.0.0.0:5000"
} }
} }

View File

@ -62,7 +62,7 @@ distribution = defaultdict(lambda: 0)
finished_and_simu = defaultdict(list) finished_and_simu = defaultdict(list)
files = {} files = {}
actions_dist = defaultdict(list) actions_dist = defaultdict(list)
with open('/home/agp8x/git/uni/ma/project/data/0000_ref') as src: with open('/home/clemens/git/ma/test/src') as src:
for line in src: for line in src:
line = line.strip() line = line.strip()
instance_id, log = get_json(line) instance_id, log = get_json(line)

View File

@ -2,14 +2,16 @@ import json
import logging import logging
from typing import List from typing import List
import numpy as np
import analyzers import analyzers
from analyzers import get_renderer, Analyzer, render, Store from analyzers import get_renderer, render
from analyzers.analyzer import ResultStore from analyzers.analyzer import ResultStore
from analyzers.analyzer.default import write_logentry_count_csv, write_simulation_flag_csv
from analyzers.render import wip
from analyzers.render.default import LogEntryCountCSV from analyzers.render.default import LogEntryCountCSV
from analyzers.render.wip import time_distribution, plot_data
from analyzers.settings import LogSettings, load_settings from analyzers.settings import LogSettings, load_settings
from loaders import LOADERS from loaders import LOADERS
from util.processing import grep, run_analysis, src_file
logging.basicConfig(format='%(levelname)s %(name)s:%(message)s', level=logging.DEBUG) logging.basicConfig(format='%(levelname)s %(name)s:%(message)s', level=logging.DEBUG)
log: logging.Logger = logging.getLogger(__name__) log: logging.Logger = logging.getLogger(__name__)
@ -18,95 +20,9 @@ logging.getLogger('requests').setLevel(logging.WARN)
logging.getLogger("urllib3").setLevel(logging.WARNING) logging.getLogger("urllib3").setLevel(logging.WARNING)
def process_log(logfile: str, settings: LogSettings) -> List[Analyzer]:
loader = LOADERS[settings.log_format]()
try:
loader.load(logfile)
except BaseException as e:
raise RuntimeError(e)
analyzers: List[Analyzer] = []
log.debug("build analyzers")
for analyzer in settings.analyzers:
analyzers.append(analyzer(settings))
log.debug("process entries")
for entry in loader.get_entry():
for analyzer in analyzers:
try:
if analyzer.process(entry):
break
except KeyError as e:
log.exception(e)
return analyzers
def run_analysis(log_ids: list, settings):
store: ResultStore = ResultStore()
for log_id in log_ids:
for analysis in process_log(log_id, settings):
log.info("* Result for " + analysis.name())
analysis.result(store, name=log_id)
return store
def load_ids(name: str):
log_ids = []
with open(name) as src:
for line in src:
line = line.strip()
log_ids.append(line)
return log_ids
def urach_logs(log_ids, settings): def urach_logs(log_ids, settings):
return ["data/inst_{id}.{format}".format(id=log_id, format=settings.log_format) for log_id in log_ids] # return ["data/inst_{id}.{format}".format(id=log_id, format=settings.log_format) for log_id in log_ids]
return ["data/{id}.{format}".format(id=log_id, format=settings.log_format) for log_id in log_ids]
def write_logentry_count_csv():
global cat, data, lines, csvfile
LogEntryCountCSV.summary = None
for cat in store.get_categories():
data = store.get_category(cat)
render(analyzers.LogEntryCountAnalyzer, data, name=cat)
if LogEntryCountCSV.summary:
headers = []
lines = []
for name in LogEntryCountCSV.summary:
data = LogEntryCountCSV.summary[name]
for head in data:
if not head in headers:
headers.append(head)
line = [name]
for head in headers:
line.append(data[head]) if head in data else line.append(0)
lines.append(line)
import csv
with open('logentrycount.csv', 'w', newline='') as csvfile:
writer = csv.writer(csvfile, quoting=csv.QUOTE_NONE)
writer.writerow(["name"] + [h.split(".")[-1] for h in headers])
for line in lines:
writer.writerow(line)
def write_simulation_flag_csv():
global csvfile, result, i
from datetime import datetime
json.dump(store.serializable(), open("simus.json", "w"), indent=2)
with open("simus.csv", "w") as csvfile:
csvfile.write("instanceconfig,log,simu,answered,universe_state,selected_actions,timestamp,time\n")
for key in store.get_store():
csvfile.write("{}\n".format(key))
for result in store.store[key]:
csvfile.write(",{}\n".format(result.name))
for i in result.get():
csvfile.write(",,{},{},{},{},{},{}\n".format(
i['answers']['@id'],
i['answers']['answered'],
len(i['answers']['universe_state']) if i['answers']['universe_state'] else 0,
len(i['selected_actions']) if i['selected_actions'] else 0,
i['timestamp'],
str(datetime.fromtimestamp(i['timestamp'] / 1000))
))
if __name__ == '__main__': if __name__ == '__main__':
@ -119,19 +35,35 @@ if __name__ == '__main__':
# "91abfd4b31a5562b1c66be37d9", # "91abfd4b31a5562b1c66be37d9",
# "597b704fe9ace475316c345903", # "597b704fe9ace475316c345903",
# "e01a684aa29dff9ddd9705edf8", # "e01a684aa29dff9ddd9705edf8",
"597b704fe9ace475316c345903",
"e01a684aa29dff9ddd9705edf8",
"fbf9d64ae0bdad0de7efa3eec6",
# "fbf9d64ae0bdad0de7efa3eec6", # "fbf9d64ae0bdad0de7efa3eec6",
"fe1331481f85560681f86827ec", "fe1331481f85560681f86827ec", # urach
# "fe1331481f85560681f86827ec"] # "fe1331481f85560681f86827ec"]
"fec57041458e6cef98652df625", ] "fec57041458e6cef98652df625",
,settings) ]
store: ResultStore = run_analysis(log_ids_urach, settings) , settings)
log_ids_gf = grep(["9d11b749c78a57e786bf5c8d28", # filderstadt
"a192ff420b8bdd899fd28573e2", # eichstätt
"3a3d994c04b1b1d87168422309", # stadtökologie
"fe1331481f85560681f86827ec", # urach
"96f6d9cc556b42f3b2fec0a2cb7ed36e" # oberelsbach
],
"/home/clemens/git/ma/test/src",
settings)
log_ids = src_file("/home/clemens/git/ma/test/filtered_5_actions")
#store: ResultStore = run_analysis(log_ids_gf, settings, LOADERS)
#store: ResultStore = run_analysis(log_ids, settings, LOADERS)
if False: if False:
for r in get_renderer(analyzers.LocomotionActionAnalyzer): for r in get_renderer(analyzers.LocomotionActionAnalyzer):
r().render(store.get_all()) r().render(store.get_all())
if False: if False:
render(analyzers.LocationAnalyzer, store.get_all()) render(analyzers.LocationAnalyzer, store.get_all())
# print(json.dumps(store.serializable(), indent=1)) # print(json.dumps(store.serializable(), indent=1))
if True: if False:
for cat in store.get_categories(): for cat in store.get_categories():
render(analyzers.ActivityMapper, store.get_category(cat), name=cat) render(analyzers.ActivityMapper, store.get_category(cat), name=cat)
# render(analyzers.ProgressAnalyzer, store.get_all()) # render(analyzers.ProgressAnalyzer, store.get_all())
@ -147,110 +79,30 @@ if __name__ == '__main__':
data = store.get_category(cat) data = store.get_category(cat)
render(analyzers.SimulationOrderAnalyzer, data, name=cat) render(analyzers.SimulationOrderAnalyzer, data, name=cat)
if False: if False:
write_logentry_count_csv() write_logentry_count_csv(LogEntryCountCSV, store, render, analyzers)
if False: if False:
write_simulation_flag_csv() write_simulation_flag_csv(store)
def calc_distance(geojson: str):
from shapely.geometry import LineString
from shapely.ops import transform
from functools import partial
import pyproj
track = LineString(json.loads(geojson)['coordinates'])
project = partial(
pyproj.transform,
pyproj.Proj(init='EPSG:4326'),
pyproj.Proj(init='EPSG:32633'))
return transform(project, track).length
if False: if False:
# json.dump(store.serializable(), open("new.json", "w"), indent=1) time_distribution(store)
from collections import defaultdict
keys = [ if True:
"simu", # spatial_data = get_data_distance(store,relative_values=False)
"question", # temporal_data = get_data(store,relative_values=False)
"image", # spatial_data_rel = get_data_distance(store,relative_values=True)
"audio", # temporal_data_rel = get_data(store,relative_values=True)
"video", # temporal_data_rel = json.load(open("temporal_rel.json"))
"other", # spatial_data_rel = json.load(open("spatial_rel.json"))
"map" # import IPython
] # IPython.embed()
import matplotlib.pyplot as plt
# results = []
places = defaultdict(list)
for log in store.get_all():
result = defaultdict(lambda: 0)
for i in log.get()['track']:
duration = i['properties']['end_timestamp'] - i['properties']['start_timestamp']
result[i['properties']['activity_type']] += duration
print(json.dumps(result, indent=4))
total = sum(result.values())
print(total)
percentage = defaultdict(lambda: 0)
minutes = defaultdict(lambda: 0)
for i in result:
percentage[i] = result[i] / total
minutes[i] = result[i] / 60_000
print(json.dumps(percentage, indent=4))
if not 'error' in result:
# places[log.get()['instance']].append(percentage)
places[log.get()['instance']].append(minutes)
for place in places:
places[place] = sorted(places[place], key=lambda item: item['map'])
dummy = [0] * len(keys)
results = []
sites = []
from util.meta_temp import CONFIG_NAMES
for i in places:
for j in places[i]:
ordered = []
for k in keys:
ordered.append(j[k])
results.append(ordered)
results.append(dummy)
sites.append(CONFIG_NAMES[i] if i in CONFIG_NAMES else "---")
size = len(results)
ind = np.arange(size)
width = 0.9
print(results)
data = list(zip(*results))
print(data)
lines = []
bottom = [0] * len(results)
for i in range(0, len(data)):
lines.append(plt.bar(ind, data[i], bottom=bottom, width=width)[0])
for k, x in enumerate(data[i]):
bottom[k] += x
plt.legend(lines, keys)
plt.title(", ".join(sites))
plt.show()
# size = len(results)
# ind = np.arange(size)
# width = 0.9
# print(results)
# data = list(zip(*results))
# print(data)
# lines = []
# bottom = [0] * len(results)
# for i in range(0, len(data)):
# lines.append(plt.bar(ind, data[i], bottom=bottom, width=width)[0])
# for k, x in enumerate(data[i]):
# bottom[k] += x
# plt.legend(lines, keys)
# plt.title("Zwei Spiele in Filderstadt (t1=237min; t2=67min)")
# plt.show()
# print(json.dumps(get_all_data(store)))
# json.dump(get_all_data(store), open("combined.json", "w"))
# combined = get_all_data(store, sort=True, relative=True)
# json.dump(combined, open("combined_rel.json", "w"))
# combined = json.load(open("combined_rel.json"))
combined = json.load(open("combined_total.json"))
# plot_time_space_rel(combined, keys)
plot_data(combined, wip.keys)
# for analyzers in analyzers: # for analyzers in analyzers:

View File

@ -4,4 +4,5 @@ matplotlib==2.1.0
osmnx==0.6 osmnx==0.6
networkx==2.0 networkx==2.0
pydot==1.2.3 pydot==1.2.3
scipy==1.0.0 scipy==1.0.0
ipython==6.2.1

View File

View File

@ -12,87 +12,14 @@
<script src="https://rawgit.com/Leaflet/Leaflet.heat/gh-pages/dist/leaflet-heat.js"></script> <script src="https://rawgit.com/Leaflet/Leaflet.heat/gh-pages/dist/leaflet-heat.js"></script>
<script src="my.js"></script> <script src="my.js"></script>
<style> <link href="style.css" rel="stylesheet"/>
.mapDiv { <main>
width: 1024px; <div class="mapDiv" id="mainMap"></div>
height: 768px; <div class="sequenceContainer">
} <div class="sequence"></div>
</div>
</main>
.board { <!--div style="font-size:0.1px;position:absolute;bottom:0;">OSM Logo: CC-BY-SA
width: 32px;
height: 32px;
display: inline-block;
position: relative;
}
.board img {
max-width: 100%;
max-height: 100%;
position: absolute;
/*bottom: 0px;*/
}
.board img:hover {
max-width: inherit;
max-height: inherit;
z-index: 99;
top: 20px;
}
.highlight {
/*what a nice way to highlight*/
display: none;
}
.simu {
background-color: blue;
}
.question {
background-color: orange;
}
.image {
background-color: green;
}
.audio {
background-color: red;
}
.video {
background-color: purple;
}
.other {
background-color: brown;
}
.map {
background-color: violet;
}
.error {
background-color: grey;
}
ul {
list-style-type: none;
overflow: auto;
overflow-y: hidden;
display: inline-block;
/*max-width:100%;
margin: 0 0 1em;
white-space: nowrap;
height:200px;*/
}
li {
display: inline-block;
vertical-align: top;
}
</style>
<div style="font-size:0.1px;position:absolute;bottom:0;">OSM Logo: CC-BY-SA
http://wiki.openstreetmap.org/wiki/File:Mag_map-120x120.png http://wiki.openstreetmap.org/wiki/File:Mag_map-120x120.png
</div> </div-->

View File

@ -1,24 +1,27 @@
//$.getJSON("data/ff8f1e8f-6cf5-4a7b-835b-5e2226c1e771_03b9b6b4-c8ab-4182-8902-1620eebe8889.json", function (data) { $.getJSON("data/ff8f1e8f-6cf5-4a7b-835b-5e2226c1e771_03b9b6b4-c8ab-4182-8902-1620eebe8889.json", function (data) { //urach
$.getJSON("data/ff8f1e8f-6cf5-4a7b-835b-5e2226c1e771_de7df5b5-edd5-4070-840f-68854ffab9aa.json", function (data) { //$.getJSON("data/ff8f1e8f-6cf5-4a7b-835b-5e2226c1e771_de7df5b5-edd5-4070-840f-68854ffab9aa.json", function (data) { //urach
//$.getJSON("data/90278021-4c57-464e-90b1-d603799d07eb_07da99c9-398a-424f-99fc-2701763a63e9.json", function (data) { //eichstätt
//$.getJSON("data/13241906-cdae-441a-aed0-d57ebeb37cac_d33976a6-8a56-4a63-b492-fe5427dbf377.json", function (data) { //stadtökologie
//$.getJSON("data/5e64ce07-1c16-4d50-ac4e-b3117847ea43_2f664d7b-f0d8-42f5-8731-c034ef86703e.json", function (data) { //filderstadt
var images = {}; var images = {};
var mapContainer = $("<div />", {id: "mainMap", class: "mapDiv"});
mapContainer.appendTo("body");
var tiles = { var tiles = {
"osm": L.tileLayer('http://{s}.tile.osm.org/{z}/{x}/{y}.png', {
attribution: '&copy; <a href="http://osm.org/copyright">OpenStreetMap</a> contributors',
}),
"openstreetmap": L.tileLayer('https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', { "openstreetmap": L.tileLayer('https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png', {
maxNativeZoom: 19,
maxZoom: 24,
attribution: '&copy; <a href="http://www.openstreetmap.org/copyright">OpenStreetMap</a>' attribution: '&copy; <a href="http://www.openstreetmap.org/copyright">OpenStreetMap</a>'
}), }),
"esri sat": L.tileLayer('https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x}', { "esri sat": L.tileLayer('https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x}', {
maxNativeZoom: 19,
maxZoom: 24,
attribution: 'Tiles &copy; Esri &mdash; Source: Esri, i-cubed, USDA, USGS, AEX, GeoEye, Getmapping, Aerogrid, IGN, IGP, UPR-EGP, and the GIS User Community' attribution: 'Tiles &copy; Esri &mdash; Source: Esri, i-cubed, USDA, USGS, AEX, GeoEye, Getmapping, Aerogrid, IGN, IGP, UPR-EGP, and the GIS User Community'
}), }),
"google sat": L.tileLayer('http://{s}.google.com/vt/lyrs=s&x={x}&y={y}&z={z}', { "google sat": L.tileLayer('https://{s}.google.com/vt/lyrs=s&x={x}&y={y}&z={z}', {
maxZoom: 20, maxNativeZoom: 20,
maxZoom: 24,
subdomains: ['mt0', 'mt1', 'mt2', 'mt3'] subdomains: ['mt0', 'mt1', 'mt2', 'mt3']
}) })
}; };
var map = L.map("mainMap", {layers: [tiles.osm], maxZoom: 22, maxNativeZoom: 19}); var map = L.map("mainMap", {layers: [tiles.openstreetmap]});
function styleTrack(feature) { function styleTrack(feature) {
var styles = {}; var styles = {};
@ -68,23 +71,32 @@ $.getJSON("data/ff8f1e8f-6cf5-4a7b-835b-5e2226c1e771_de7df5b5-edd5-4070-840f-688
var heat = L.heatLayer(coords); var heat = L.heatLayer(coords);
L.control.layers(tiles, {"heatmap": heat}).addTo(map); L.control.layers(tiles, {"heatmap": heat}).addTo(map);
var marker = null;
var list = $("<ul />"); var list = $("<ul />");
var current = {
"pos":data["boards"][1].coordinate.coordinates
};
console.log(current);
var marker = L.marker([current.pos[1], current.pos[0]]).addTo(map);
$.each(data["boards"], function (index, entry) { $.each(data["boards"], function (index, entry) {
//console.log(index, entry); //console.log(index, entry);
var item = $("<li>", {class: entry.extra_data.activity_type}); var item = $("<li>", {class: entry.extra_data.activity_type});
var container = $("<div>", {class: "board"}); var container = $("<div>", {class: "board"});
var image = $("<img>", {src: entry.image.replace("static/progress/", ""), height: 200}); var image = $("<img>", {src: entry.image.replace("static/progress/", "")});
image.attr("data-time", entry.timestamp); image.attr("data-time", entry.timestamp);
image.hover(function () { image.hover(function () {
marker = L.geoJSON(entry.coordinate).addTo(map); marker.setLatLng([entry.coordinate.coordinates[1], entry.coordinate.coordinates[0]]);
}, function () { }, function () {
map.removeLayer(marker); marker.setLatLng(current.pos.coordinates[1], current.pos.coordinates[0]);
});
image.click(function (e) {
current.board = image;
current.pos = entry.coordinate;
}); });
images[entry.timestamp] = {image: image, coordinate: entry.coordinate}; images[entry.timestamp] = {image: image, coordinate: entry.coordinate};
image.appendTo(container); image.appendTo(container);
container.appendTo(item); container.appendTo(item);
item.appendTo(list); item.appendTo(list);
}); });
list.appendTo("body"); current.board=images[data["boards"][1].timestamp];
list.appendTo(".sequence");
}); });

105
static/progress/style.css Normal file
View File

@ -0,0 +1,105 @@
/*.mapDiv {
width: 1024px;
height: 768px;
}*/
.highlight {
/*what a nice way to highlight*/
display: none;
}
.simu {
background-color: blue;
}
.question {
background-color: orange;
}
.image {
background-color: green;
}
.audio {
background-color: red;
}
.video {
background-color: purple;
}
.other {
background-color: brown;
}
.map {
background-color: violet;
}
.error {
background-color: grey;
}
.board {
width: 32px;
height: 32px;
display: inline-block;
}
.board img {
max-width: 32px;
max-height: 32px;
position: absolute;
/*bottom: 0px;*/
}
.board:hover img{
max-width: 205px;
max-height: 295px;
z-index: 99;
top: 5px;
right:0px;
}
ul {
list-style-type: none;
overflow: auto;
overflow-y: hidden;
display: inline-block;
/*max-width:100%;
margin: 0 0 1em;
white-space: nowrap;
height:200px;*/
}
li {
display: inline-block;
vertical-align: top;
padding: 2px;
margin-bottom: 2px;
}
body{
height: 100%;
padding:0;
margin:0;
}
main{
display: flex;
flex-direction: column;
height:100%;
}
.mapDiv {
flex-grow:1;
}
.sequenceContainer{
flex-grow: 0;
min-height:300px;
padding-right: 210px;
position: relative;
}

12
util/geo.py Normal file
View File

@ -0,0 +1,12 @@
def calc_distance(geojson: str):
from shapely.geometry import LineString
from shapely.ops import transform
from functools import partial
import pyproj
import json
track = LineString(json.loads(geojson)['coordinates'])
project = partial(
pyproj.transform,
pyproj.Proj(init='EPSG:4326'),
pyproj.Proj(init='EPSG:32633'))
return transform(project, track).length

66
util/processing.py Normal file
View File

@ -0,0 +1,66 @@
import logging
from typing import List
from analyzers.analyzer import ResultStore, Analyzer
from analyzers.settings import LogSettings
log: logging.Logger = logging.getLogger(__name__)
def process_log(logfile: str, settings: LogSettings, loaders) -> List[Analyzer]:
loader = loaders[settings.log_format]()
try:
loader.load(logfile)
except BaseException as e:
raise RuntimeError(e)
analyzers: List[Analyzer] = []
log.debug("build analyzers")
for analyzer in settings.analyzers:
analyzers.append(analyzer(settings))
log.debug("process entries")
for entry in loader.get_entry():
for analyzer in analyzers:
try:
if analyzer.process(entry):
break
except KeyError as e:
log.exception(e)
return analyzers
def run_analysis(log_ids: list, settings, loaders):
store: ResultStore = ResultStore()
for log_id in log_ids:
for analysis in process_log(log_id, settings, loaders):
log.info("* Result for " + analysis.name())
analysis.result(store, name=log_id)
return store
def load_ids(name: str):
log_ids = []
with open(name) as src:
for line in src:
line = line.strip()
log_ids.append(line)
return log_ids
def grep(log_ids, source, settings):
logs = []
with open(source) as src:
lines = src.readlines()
for id in log_ids:
for line in lines:
if id in line:
logs.append(line.strip())
return logs
def src_file(filename):
log_ids = []
with open(filename) as src:
for line in src:
line = line.strip()
log_ids.append(line)
return log_ids